About Amerisurv| Contact    
Magazine | Newsletter    
Flickr Photos | Advertise    
HomeNewsNewsletterAmerisurv DirectoryJobsStoreAuthorsHistoryArchivesBlogVideosEvents

Product Reviews
Software Reviews
Sponsored By

Continuing Series
An RTN expert provides everything you need to know about network-corrected real-time GNSS observations.
Click Here to begin the series,
or view the Article PDF's Here
76-PageFlip Compilation
of the entire series
Test Yourself

Got Answers?
Test your knowledge with NCEES-level questions.
  Start HERE
Meet the Authors
Check out our fine lineup of writers. Each an expert in his or her field.
Wow Factor
Sponsored By

Partner Sites


LiDAR News






Spatial Media LLC properties




Home arrow Archives   The American Surveyor     

Footsteps: Best Practices for Very Large Boundary Surveys—Coordinate Reference Systems Print E-mail
Written by Landon Blake, PS   
Friday, 16 November 2012

A 147Kb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE

In the March 2012 installment of Footsteps we outlined best practices for research and data management on very large boundary surveys. In this installment, we will return to the topic of very large boundary surveys, but this time we are going to discuss best practices for selecting and using coordinate reference systems.

What is a coordinate reference system?
We will provide a very simple definition of coordinate reference system that will serve us for the remainder of this article: A coordinate reference system is used to identify the position of geographic features.

In the case of a very large boundary survey, we use coordinate reference systems to identify the position of property corners, property corner monuments, and other elements of our boundary survey. In most cases, we will be using a coordinate reference system that includes a map projection. A map projection is a geometric construct used to "project" the location of features on the curved surface of the earth onto a plane, or flat surface that is more useful for mapping.

Why is it important to think about the coordinate reference system used for your very large boundary survey?
It is important to consider the coordinate reference system for your very large boundary system for two (2) reasons:
• Over large areas the shape of the earth distorts your surveying measurements and calculations.
• The distortions that impact your measurements and calculations can result in the improper location of property corners and boundaries.

Consider the following four (4) best practices for selecting and using a coordinate reference system on your very large boundary survey.

Best Practice #1: Know how your measurements are affected.
On a very large boundary survey you need to understand how the shape of the earth, and your use of a coordinate reference system, can impact your measurements and calculations. This
distortion can occur in at least four (4) ways:
• Distortion of distances. Distances can be shorter or longer on the grid or plane used in many map projections. A scale factor is used to convert distances between the grid or plane and "ground", or the earth's surface. The scale factor used can vary with the location and elevation of the project. Significant change in elevation within a project can also distort distances.
• Distortions of directions and angles. Directions and angles can also be distorted by the shape of the earth over large areas. Meridians converge as you move towards the poles, spherical excess results in the misclosure of large traverses, and lines on the latitudinal curve have a constantly changing bearing.
• Distortions of area. Areas of parcels are also distorted over large areas, and in the use of map projections. Like distances, areas can be larger or smaller on the grid or plane, depending on the parcel location and the type of projection used.
• Distortions in shape. The shapes of parcels and lines can also be distorted over large areas, and in the use of map projections.

Best Practice #2: Know How Big is Big Enough to Matter
The four (4) types of distortions listed above will not be significant in all boundary surveys. One task for the boundary survey is to understand when the errors are big enough to matter. The following characteristics of your very large boundary survey can impact the size of the distortions:
• The size (area) of the very large boundary survey.
• The size (length) of the very large boundary survey.
• The location of the very large boundary survey in relation to the coordinate reference system.
• The type of coordinate reference system (and map projection) selected for the very large boundary survey.
• The elevation of points in the very large boundary survey.

Consider some brief examples: The larger the area of a very large boundary survey, the greater the spherical excess. In many cases, as the distance increases between your very large boundary survey and elements of the map projection, the angular distortions (mapping angle) and scale factor distortions increase. Scale factor, or the difference between grid distances and ground distances can increase with elevation.

Best Practice #3: Select an appropriate CRS for your very large boundary survey.
It is important to select the appropriate coordinate reference system for your very large boundary survey. Many surveyors choose to work on their local state plane coordinate system. Almost all boundary surveys at the surveying company I work for are done on state plane coordinates. However, I know I'm guilty of using the state plane coordinate system by default. Don't make this same mistake. Understand how your particular state plane coordinate system distorts measurements and make a good professional judgment on whether it is the best choice for the very large boundary survey under consideration. You can view a list of map projection types from the USGS at http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html.

What are some factors you may want to consider when selecting a coordinate reference system for your very large boundary survey? They include the following:
• The elements for which you want to minimize distortion on your survey. These are the elements listed in Best Practice #1. For example: If doing large scale work for a tax assessment, it may be more important to minimize errors to area than the other elements. 
• The shape and alignment of your project. For example: Some map projections work well for projects with a large east-west extent, while others work better for projects with a large north-south extent.
• The location of your project within the map projection used by your CRS. If your CRS uses a map projection that places your project location near the edge, or across the edge, of a map projection zone, it may be a poor choice.
• Your ability to perform calculations that move between your surveyed positions on the surface of the earth and the map projection plane or grid. For example: NGS makes available software online that can be used to convert between latitude/longitude positions and state plane coordinates.
• Local laws and regulations may require the use of specific coordinate reference systems for specific types of projects. For example: Many jurisdictions now require boundary surveys to be referenced to the state plane coordinate system.

Best Practice #4: Include appropriate coordinate reference system data on your filed survey. In many jurisdictions you are required by law to file a survey in the public record if your survey hits certain triggers. It is important to include detailed information about the coordinate reference system used for your survey, especially if coordinate values are shown. (I provide coordinate values on all of the property corner monuments shown on my filed surveys.) This allows retracing surveyor's to understand how your work was completed and preserves the value of the work that is reflected on your filed survey map.

What information needs to be shown about the coordinate reference system you selected for your very large boundary survey? It should show, at a minimum, the following elements:
• The identity (name) of the coordinate reference system.
• The identity (name) of the horizontal and vertical datum used in the coordinate reference system.
• The scale factor used to move distances and areas between the surface of the earth and the plane (or grid).
• The mapping angle used to move directions and angles between the surface of the earth and the plane (or grid).
• Identity (name) and published coordinates for the control points used to establish the coordinate reference system for the very large boundary survey.

Remember that some jurisdictions have requirements you must meet of you use certain coordinate reference systems, or if you use them in a particular way. For example: California requires that you show ties to control monuments and other information on your filed survey map if you show California state plane coordinates. You have to meet additional requirements if you list accuracies for these coordinates.

I'm certainly not a geodesist. There is a great deal I still have to learn about geodesy and its application to land surveying. Many boundary surveyors share that challenge with me. However, especially when working on very large boundary surveys, knowledge of geodesy and of coordinate reference systems becomes more important. Hopefully this article will get some of my readers to think about the issues involved, and to learn more, as I plan to do. I hope I can look closer at some of the items we discussed in this article, as they relate to boundary surveys, in future Footsteps articles. The relationship between geodesy and the PLSS is especially interesting, as I've been learning during my CFEDS training this summer. If you have comments or questions about geodesy as it applies to boundary surveying, please don't hesitate to contact me. Perhaps our conversations can serve as the starting place for future articles.

Landon Blake is currently project manager and project surveyor for a small civil engineering and land surveying company in California's Central Valley. Licensed in California and Nevada, his many activities include speaking and teaching at group conferences around the state.

A 147Kb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE


< Prev   Next >

 American Surveyor Recent Articles
Editorial: The Fire Alarm
Based on the reaction to our exposé of an attempt to remove boundary experience from the requirements to sit for a licensing exam, we seem to have struck a nerve. An educator from New Mexico chastised me for allowing the magazine to be "divisive, vilify the efforts of other ....
Read the Article
Wendy Lathrop
Vantage Point: Introducing TMAC-2
One of the closing suggestions of the first Technical Mapping Advisory Council to FEMA (TMAC-1), which convened from 1996 through 2000, was for an ongoing advisory group of technical users, something more permanent than its own five-year statutory span. The recommendations of TMAC-1 ....
Read the Article
Michael J. Pallamary, PS 
The Curt Brown Chronicles: The Future for the Land Surveyor
Curt Brown spent a considerable amount of time and energy in advancing the interests of the profession and, as he astutely noted, notwithstanding the evolution of measuring equipment, the fundamentals components of the profession merit consideration and attention. Then, as now, the future ....
Read the Article
Jason E.
Foose, PS 
The HP 35s Calculator—A Field Surveyor's Companion—Part 5- Inverse to a Line or Perpendicular Offset
This program is comparable to "inverse to line" and "station/offset" routines. The user enters a base point and defines a direction by point or azimuth, then selects a third point for reference. I use this routine frequently ....
Read the Article
Natalie Binder 
Moving London Safely Forward
Paddington Station, ­famous worldwide not only for its creator Isambard Kingdom Brunel, but also for a small marmalade loving bear. Built in 1854, Paddington Station is a fine example of an English Heritage grade 1 listed building and is site to the ....
Read the Article
Roman, Youngman 
Recent Activities at the National Geodetic Survey—Part 2 of 4
The Gravity for the Redefinition of the American Vertical Datum (or GRAV-D) project got off the ground, literally, in 2007 when NGS's first airborne gravity flights took place. Today the GRAV-D airplanes continue to fly! With a second airborne gravimeter acquired in December 2011, NGS has been ....
Read the Article
Jerry Penry,
The Pole of Inaccessibility
The most challenging location to reach due to its remoteness from geographical features is known as a pole of inaccessibility. Generally, this calculated position is furthest from any coastline and would be the location where you would least like to be ....
Read the Article
Larry Trojak 
Use of Total Station Spawns Improvements in Salmon Monitoring Program
Think surveying equipment and it's not likely that an organization working to ensure the survival of the Pacific Northwest's salmon population comes to mind. Yet that is precisely what's ....
Read the Article
Albert “skip” Theberge 
Artillery Surveyors in WWII—Africa & Europe: Part 3: Survey Officers
Lieutenant Colonel Earle Deily, on loan from the USC&GS, was Survey Officer for the V Corps and the 17th Field Artillery Observation Battalion providing survey control to the battalion, training survey teams, and advising the V Corps Artillery Commander. He helped plan for the D-Day invasion and ....
Read the Article
I read with great interest your editorial and comments concerning Chad and Linda Erickson's article on an Idaho initiative to redefine the definition of surveying in Idaho state statutes. I am not familiar with the specifics of what is being proposed and will leave it to others to decide the ....
Read the Article
Bill Chupka,
100 Years Too Late?
There have been times in my life when I had more than just a foot in the past. Ever feel like you are one of those people who was born a hundred years too late? I remember feeling that way at times when I was young, but I was able to put all those thoughts to rest this summer over the span ....
Read the Article


Amerisurv Exclusive Online-only Article ticker
Featured Amerisurv Events
List Your Event Here
contact Amerisurv


Spectra Releases
New Digital Level

press [at] amerisurv.com
Online Internet Content


News Feeds

Subscribe to Amerisurv news & updates via RSS or get our Feedburn
xml feed

Need Help? See this RSS Tutorial

Historic Maps

post a job
Reach our audience of Professional land surveyors and Geo-Technology professionals with your GeoJobs career ad. Feel free to contact us if you need additional information.


Social Bookmarks

Amerisurv on Facebook 

Amerisurv LinkedIn Group 

Amerisurv Flickr Photos 

Amerisurv videos on YouTube 



The American Surveyor © All rights reserved / Privacy Statement
Spatial Media LLC
905 W 7th St #331
Frederick MD 21701
301-695-1538 - fax